Alaska
Defending against Backdoor Attack on Deep Neural Networks
Cheng, Hao, Xu, Kaidi, Liu, Sijia, Chen, Pin-Yu, Zhao, Pu, Lin, Xue
Although deep neural networks (DNNs) have achieved a great success in various computer vision tasks, it is recently found that they are vulnerable to adversarial attacks. In this paper, we focus on the so-called \textit{backdoor attack}, which injects a backdoor trigger to a small portion of training data (also known as data poisoning) such that the trained DNN induces misclassification while facing examples with this trigger. To be specific, we carefully study the effect of both real and synthetic backdoor attacks on the internal response of vanilla and backdoored DNNs through the lens of Gard-CAM. Moreover, we show that the backdoor attack induces a significant bias in neuron activation in terms of the $\ell_\infty$ norm of an activation map compared to its $\ell_1$ and $\ell_2$ norm. Spurred by our results, we propose the \textit{$\ell_\infty$-based neuron pruning} to remove the backdoor from the backdoored DNN. Experiments show that our method could effectively decrease the attack success rate, and also hold a high classification accuracy for clean images.
The study of short texts in digital politics: Document aggregation for topic modeling
Nakka, Nitheesha, Yalcin, Omer F., Desmarais, Bruce A., Rajtmajer, Sarah, Monroe, Burt
Statistical topic modeling is widely used in political science to study text. Researchers examine documents of varying lengths, from tweets to speeches. There is ongoing debate on how document length affects the interpretability of topic models. We investigate the effects of aggregating short documents into larger ones based on natural units that partition the corpus. In our study, we analyze one million tweets by U.S. state legislators from April 2016 to September 2020. We find that for documents aggregated at the account level, topics are more associated with individual states than when using individual tweets. This finding is replicated with Wikipedia pages aggregated by birth cities, showing how document definitions can impact topic modeling results.
Towards a robust R2D2 paradigm for radio-interferometric imaging: revisiting DNN training and architecture
Aghabiglou, Amir, Chu, Chung San, Tang, Chao, Dabbech, Arwa, Wiaux, Yves
The R2D2 Deep Neural Network (DNN) series was recently introduced for image formation in radio interferometry. It can be understood as a learned version of CLEAN, whose minor cycles are substituted with DNNs. We revisit R2D2 on the grounds of series convergence, training methodology, and DNN architecture, improving its robustness in terms of generalisability beyond training conditions, capability to deliver high data fidelity, and epistemic uncertainty. Firstly, while still focusing on telescope-specific training, we enhance the learning process by randomising Fourier sampling integration times, incorporating multi-scan multi-noise configurations, and varying imaging settings, including pixel resolution and visibility-weighting scheme. Secondly, we introduce a convergence criterion whereby the reconstruction process stops when the data residual is compatible with noise, rather than simply using all available DNNs. This not only increases the reconstruction efficiency by reducing its computational cost, but also refines training by pruning out the data/image pairs for which optimal data fidelity is reached before training the next DNN. Thirdly, we substitute R2D2's early U-Net DNN with a novel architecture (U-WDSR) combining U-Net and WDSR, which leverages wide activation, dense connections, weight normalisation, and low-rank convolution to improve feature reuse and reconstruction precision. As previously, R2D2 was trained for monochromatic intensity imaging with the Very Large Array (VLA) at fixed $512 \times 512$ image size. Simulations on a wide range of inverse problems and a case study on real data reveal that the new R2D2 model consistently outperforms its earlier version in image reconstruction quality, data fidelity, and epistemic uncertainty.
NAVIG: Natural Language-guided Analysis with Vision Language Models for Image Geo-localization
Zhang, Zheyuan, Li, Runze, Kabir, Tasnim, Boyd-Graber, Jordan
Image geo-localization is the task of predicting the specific location of an image and requires complex reasoning across visual, geographical, and cultural contexts. While prior Vision Language Models (VLMs) have the best accuracy at this task, there is a dearth of high-quality datasets and models for analytical reasoning. We first create NaviClues, a high-quality dataset derived from GeoGuessr, a popular geography game, to supply examples of expert reasoning from language. Using this dataset, we present Navig, a comprehensive image geo-localization framework integrating global and fine-grained image information. By reasoning with language, Navig reduces the average distance error by 14% compared to previous state-of-the-art models while requiring fewer than 1000 training samples. Our dataset and code are available at https://github.com/SparrowZheyuan18/Navig/.
SHIFT: An Interdisciplinary Framework for Scaffolding Human Attention and Understanding in Explanatory Tasks
Groร, Andrรฉ, Richter, Birte, Wrede, Britta
In this work, we present a domain-independent approach for adaptive scaffolding in robotic explanation generation to guide tasks in human-robot interaction. We present a method for incorporating interdisciplinary research results into a computational model as a pre-configured scoring system implemented in a framework called SHIFT. This involves outlining a procedure for integrating concepts from disciplines outside traditional computer science into a robotics computational framework. Our approach allows us to model the human cognitive state into six observable states within the human partner model. To study the pre-configuration of the system, we implement a reinforcement learning approach on top of our model. This approach allows adaptation to individuals who deviate from the configuration of the scoring system. Therefore, in our proof-of-concept evaluation, the model's adaptability on four different user types shows that the models' adaptation performs better, i.e., recouped faster after exploration and has a higher accumulated reward with our pre-configured scoring system than without it. We discuss further strategies of speeding up the learning phase to enable a realistic adaptation behavior to real users. The system is accessible through docker and supports querying via ROS.
Mapping bathymetry of inland water bodies on the North Slope of Alaska with Landsat using Random Forest
Carroll, Mark L., Wooten, Margaret R., Simpson, Claire E., Spradlin, Caleb S., Frost, Melanie J., Blanco-Rojas, Mariana, Williams, Zachary W., Caraballo-Vega, Jordan A., Neigh, Christopher S. R.
The North Slope of Alaska is dominated by small waterbodies that provide critical ecosystem services for local population and wildlife. Detailed information on the depth of the waterbodies is scarce due to the challenges with collecting such information. In this work we have trained a machine learning (Random Forest Regressor) model to predict depth from multispectral Landsat data in waterbodies across the North Slope of Alaska. The greatest challenge is the scarcity of in situ data, which is expensive and difficult to obtain, to train the model. We overcame this challenge by using modeled depth predictions from a prior study as synthetic training data to provide a more diverse training data pool for the Random Forest. The final Random Forest model was more robust than models trained directly on the in situ data and when applied to 208 Landsat 8 scenes from 2016 to 2018 yielded a map with an overall $r^{2}$ value of 0.76 on validation. The final map has been made available through the Oak Ridge National Laboratory Distribute Active Archive Center (ORNL-DAAC). This map represents a first of its kind regional assessment of waterbody depth with per pixel estimates of depth for the entire North Slope of Alaska.
Is It Navajo? Accurate Language Detection in Endangered Athabaskan Languages
Yang, Ivory, Ma, Weicheng, Zhang, Chunhui, Vosoughi, Soroush
Endangered languages, such as Navajo - the most widely spoken Native American language - are significantly underrepresented in contemporary language technologies, exacerbating the challenges of their preservation and revitalization. This study evaluates Google's Language Identification (LangID) tool, which does not currently support any Native American languages. To address this, we introduce a random forest classifier trained on Navajo and twenty erroneously suggested languages by LangID. Despite its simplicity, the classifier achieves near-perfect accuracy (97-100%). Additionally, the model demonstrates robustness across other Athabaskan languages - a family of Native American languages spoken primarily in Alaska, the Pacific Northwest, and parts of the Southwestern United States - suggesting its potential for broader application. Our findings underscore the pressing need for NLP systems that prioritize linguistic diversity and adaptability over centralized, one-size-fits-all solutions, especially in supporting underrepresented languages in a multicultural world. This work directly contributes to ongoing efforts to address cultural biases in language models and advocates for the development of culturally localized NLP tools that serve diverse linguistic communities.
Deep Learning-Based Approach for Identification of Potato Leaf Diseases Using Wrapper Feature Selection and Feature Concatenation
Naeem, Muhammad Ahtsam, Saleem, Muhammad Asim, Sharif, Muhammad Imran, Akber, Shahzad, Saleem, Sajjad, Akhtar, Zahid, Siddique, Kamran
The potato is a widely grown crop in many regions of the world. In recent decades, potato farming has gained incredible traction in the world. Potatoes are susceptible to several illnesses that stunt their development. This plant seems to have significant leaf disease. Early Blight and Late Blight are two prevalent leaf diseases that affect potato plants. The early detection of these diseases would be beneficial for enhancing the yield of this crop. The ideal solution is to use image processing to identify and analyze these disorders. Here, we present an autonomous method based on image processing and machine learning to detect late blight disease affecting potato leaves. The proposed method comprises four different phases: (1) Histogram Equalization is used to improve the quality of the input image; (2) feature extraction is performed using a Deep CNN model, then these extracted features are concatenated; (3) feature selection is performed using wrapper-based feature selection; (4) classification is performed using an SVM classifier and its variants. This proposed method achieves the highest accuracy of 99% using SVM by selecting 550 features.
Deep Learning in Early Alzheimer's disease's Detection: A Comprehensive Survey of Classification, Segmentation, and Feature Extraction Methods
Hafeez, Rubab, Waheed, Sadia, Naqvi, Syeda Aleena, Maqbool, Fahad, Sarwar, Amna, Saleem, Sajjad, Sharif, Muhammad Imran, Siddique, Kamran, Akhtar, Zahid
Alzheimers disease is a deadly neurological condition, impairing important memory and brain functions. Alzheimers disease promotes brain shrinkage, ultimately leading to dementia. Dementia diagnosis typically takes 2.8 to 4.4 years after the first clinical indication. Advancements in computing and information technology have led to many techniques of studying Alzheimers disease. Early identification and therapy are crucial for preventing Alzheimers disease, as early-onset dementia hits people before the age of 65, while late-onset dementia occurs after this age. According to the 2015 World Alzheimers disease Report, there are 46.8 million individuals worldwide suffering from dementia, with an anticipated 74.7 million more by 2030 and 131.5 million by 2050. Deep Learning has outperformed conventional Machine Learning techniques by identifying intricate structures in high-dimensional data. Convolutional Neural Network (CNN) and Recurrent Neural Network (RNN), have achieved an accuracy of up to 96.0% for Alzheimers disease classification, and 84.2% for mild cognitive impairment (MCI) conversion prediction. There have been few literature surveys available on applying ML to predict dementia, lacking in congenital observations. However, this survey has focused on a specific data channel for dementia detection. This study evaluated Deep Learning algorithms for early Alzheimers disease detection, using openly accessible datasets, feature segmentation, and classification methods. This article also has identified research gaps and limits in detecting Alzheimers disease, which can inform future research.
Comparison Study: Glacier Calving Front Delineation in Synthetic Aperture Radar Images With Deep Learning
Gourmelon, Nora, Heidler, Konrad, Loebel, Erik, Cheng, Daniel, Klink, Julian, Dong, Anda, Wu, Fei, Maul, Noah, Koch, Moritz, Dreier, Marcel, Pyles, Dakota, Seehaus, Thorsten, Braun, Matthias, Maier, Andreas, Christlein, Vincent
Calving front position variation of marine-terminating glaciers is an indicator of ice mass loss and a crucial parameter in numerical glacier models. Deep Learning (DL) systems can automatically extract this position from Synthetic Aperture Radar (SAR) imagery, enabling continuous, weather- and illumination-independent, large-scale monitoring. This study presents the first comparison of DL systems on a common calving front benchmark dataset. A multi-annotator study with ten annotators is performed to contrast the best-performing DL system against human performance. The best DL model's outputs deviate 221 m on average, while the average deviation of the human annotators is 38 m. This significant difference shows that current DL systems do not yet match human performance and that further research is needed to enable fully automated monitoring of glacier calving fronts. The study of Vision Transformers, foundation models, and the inclusion and processing strategy of more information are identified as avenues for future research.